翻訳と辞書 |
Alternating operator : ウィキペディア英語版 | Exterior algebra
In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogs. The exterior product of two vectors ''u'' and ''v'', denoted by , is called a bivector and lives in a space called the ''exterior square'', a vector space that is distinct from the original space of vectors. The magnitude〔Strictly speaking, the magnitude depends on some additional structure, namely that the vectors be in a Euclidean space. We do not generally assume that this structure is available, except where it is helpful to develop intuition on the subject.〕 of can be interpreted as the area of the parallelogram with sides ''u'' and ''v'', which in three dimensions can also be computed using the cross product of the two vectors. Like the cross product, the exterior product is anticommutative, meaning that for all vectors ''u'' and ''v''. One way to visualize a bivector is as a family of parallelograms all lying in the same plane, having the same area, and with the same orientation of their boundaries—a choice of clockwise or counterclockwise. When regarded in this manner, the exterior product of two vectors is called a 2-blade. More generally, the exterior product of any number ''k'' of vectors can be defined and is sometimes called a ''k''-blade. It lives in a space known as the ''k''th exterior power. The magnitude of the resulting ''k''-blade is the volume of the ''k''-dimensional parallelotope whose edges are the given vectors, just as the magnitude of the scalar triple product of vectors in three dimensions gives the volume of the parallelepiped generated by those vectors. The exterior algebra, or Grassmann algebra after Hermann Grassmann,〔 introduced these as ''extended'' algebras (cf. ). He used the word ''äußere'' (literally translated as ''outer'', or ''exterior'') only to indicate the ''produkt'' he defined, which is nowadays conventionally called ''exterior product'', probably to distinguish it from the ''outer product'' as defined in modern linear algebra.〕 is the algebraic system whose product is the exterior product. The exterior algebra provides an algebraic setting in which to answer geometric questions. For instance, blades have a concrete geometric interpretation, and objects in the exterior algebra can be manipulated according to a set of unambiguous rules. The exterior algebra contains objects that are not just ''k''-blades, but sums of ''k''-blades; such a sum is called a ''k''-vector.〔The term ''k-vector'' is not equivalent to and should not be confused with similar terms such as ''4-vector'', which in a different context could mean a 4-dimensional vector. A minority of authors use the term ''k''-multivector instead of ''k''-vector, which avoids this confusion.〕 The ''k''-blades, because they are simple products of vectors, are called the simple elements of the algebra. The ''rank'' of any ''k''-vector is defined to be the smallest number of simple elements of which it is a sum. The exterior product extends to the full exterior algebra, so that it makes sense to multiply any two elements of the algebra. Equipped with this product, the exterior algebra is an associative algebra, which means that for any elements ''α'', ''β'', ''γ''. The ''k''-vectors have degree ''k'', meaning that they are sums of products of ''k'' vectors. When elements of different degrees are multiplied, the degrees add like multiplication of polynomials. This means that the exterior algebra is a graded algebra. The definition of the exterior algebra makes sense for spaces not just of geometric vectors, but of other vector-like objects such as vector fields or functions. In full generality, the exterior algebra can be defined for modules over a commutative ring, and for other structures of interest in abstract algebra. It is one of these more general constructions where the exterior algebra finds one of its most important applications, where it appears as the algebra of differential forms that is fundamental in areas that use differential geometry. Differential forms are mathematical objects that represent infinitesimal areas of infinitesimal parallelograms (and higher-dimensional bodies), and so can be integrated over surfaces and higher dimensional manifolds in a way that generalizes the line integrals from calculus. The exterior algebra also has many algebraic properties that make it a convenient tool in algebra itself. The association of the exterior algebra to a vector space is a type of functor on vector spaces, which means that it is compatible in a certain way with linear transformations of vector spaces. The exterior algebra is one example of a bialgebra, meaning that its dual space also possesses a product, and this dual product is compatible with the exterior product. This dual algebra is precisely the algebra of alternating multilinear forms, and the pairing between the exterior algebra and its dual is given by the interior product. ==Motivating examples==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Exterior algebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|